LS-View

Vision through the scanner

Dedicated to scan field observation before, during, and after the laser process, the LS-View is a passive vision system aligned with the laser beam. **No mechanical stage movement** is required to get a clear image of the workpiece.

Before the process, viewing the scan field center can help positioning the workpiece at the right place. During the process, displaying the ablation allows a visual monitoring of the process. After the process, another visual inspection can validate that the ablation has been done where it was supposed to be.

Including a dichroic optic for wavelength splitting, an objective with its focus setting, an interference filter for getting a sharp image, and a $\frac{1}{2}$ " camera, the LS-View offers a direct visualization of the center of the objective field, with **resolutions** down to 4 μ m.

In addition to XY positioning, vertical resolution is in the range of the laser Rayleigh length which allows a **fast Z positioning** of the workpiece without having to engrave it.

Directly connected to a computer through an ethernet interface, the LS-View's camera can be displayed in the KYLA®'s software, a full **microprocessing software** able to communicate with several stages, cameras, and lasers. Alternatively, the image can be displayed on another software as any standard camera.

Key features

- Dual wavelength 515 + 1.030 nm
- High resolution image
- Less than 2% laser attenuation
- Focus setting

Specifications	LS-View	
Input aperture	22 mm (Advised beam diameter of max 12 mm)	
Wavelength	Dual wavelength 515 +/- 5 nm & 1.030 +/- 10 nm (343 +/- 3 nm upon request)	
Max input peak energy density	80 μJ/mm² @ 300 fs – 1.030 nm* 40 μJ/mm² @ 300 fs – 515 nm*	
Max input peak power density	16 W/mm² @ 300 fs – 1.030 nm* 8 W/mm² @ 300 fs – 515 nm*	
Max input power	100 W	
Input polarization	Any	
Observation wavelength	700 nm	
Transmission	> 95 %	
Output aperture	22 mm	
Alignment	Reference irises for easy on-site alignment	
Size	230 x 104 x 89 mm	
Power supply	Power over Ethernet or 24V – 500 mA	
PC interface	GigE RJ45	

	F-Theta objectives		
Focal length	50 mm	100 mm	
Field size	4 x 3 mm	8 x 6 mm	
Optical resolution	4 µm	8 µm	
USAF test			

These data can change according to LS-Scan input aperture, telecentricity, or lighting

Due to fused silica, at higher energies or powers, self-focusing effects may appear, which could eventually damage the following optical components.